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Real-space renormalization-group approach to field evolution equations
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An operator formalism for the reduction of degrees of freedom in the evolution of discrete partial differential
equations~PDE! via real-space renormalization group is introduced, in which cell overlapping is the key
concept. Applications to (111)-dimensional PDEs are presented for linear and quadratic equations that are
first order in time.
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I. INTRODUCTION

The use of real-space renormalization group~RSRG!
techniques@1,2# to analyze questions related to the discre
zation of classical evolution field equations has recen
raised a great deal of attention. Promising results have b
achieved from the concept ofperfect action@3# and its ap-
plication to deterministic partial differential equations~PDE!
@4,5#. Recently, the group of Hou, Goldenfeld, and McKa
extended the idea to stochastic PDE@6# by using a space
time Monte Carlo formalism for classical problems@7#. In
this last work, interesting nonlocal effects were discovere

The present work tries to develop further the line traced
Ref. @5# generalizing the notion ofcoarse graining. The
fields are assumed to be defined on spatial cells and a me
nism to define truncation operators is provided based on
overlapping of cells in different partitions of space. Bot
linear and nonlinear (111)-PDE are analyzed. Stochast
equations are not dealt with in the present work, but it sho
be noticed that the formalism of Ref.@6# may be easily
adapted to include the new truncation operators.

This paper is organized as follows: Sec. II discusses
RSRG operator formalism that shall be applied. Our geom
ric construction of the truncation operators is explained
detail in Sec. III. Section IV is devoted to the exposition
some numerical results. Some concluding remarks and
posals for later work are discussed in the Sec. V.

II. THE FORMALISM

Let P be a partition of a given region of a manifoldM,
composed of the cells$Ci% i 51

N . Let f be a scalar field on tha
region of space and consider the discretization@8# associated
to the partition

f i[E
M

dmf~x!, ~1!
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wherem is any measure onM. Let us, furthermore, conside
the following evolution equation, which we will assume e
act @9#:

] tf i5Hi j f j . ~2!

This scheme can hold easily any linear evolution equati
with a great variety of boundary conditions. Equation~2!
may result from the discretization of any linear PDE~or even
a nonlocal equation! within any explicit or implicit algo-
rithm. The operatorH shall be termed theevolution genera-
tor.

Some nonlinear equations may enter easily this form
ism. For example, any quadratic evolution generator mi
be added as

] tf i5Qi jkf jfk1Hi j f j . ~3!

This allows study of surface growth phenomena as gover
by the Kardar-Parisi-Zhang~KPZ! equation@10# or the re-
lated one-dimensional~1D! turbulence described by Burger
equation. More complex equations such as Navier-Stokes
by the moment out of reach of the formalism because
fields under study are not scalar.

The field discretizations as defined by Eq.~1! find their
natural place in a vector spaceEN. A truncation operator
R:EN°EM defines a subdiscretization within the origin
vector space. The effective field component indices shal
denoted with capital letters:$f I8%PEM. The new discretiza-
tion only providesM degrees of freedom and, thus, theR
operator must have a nontrivial kernel.

The truncation operator shall be chosen to be linear@11#.
This enables us to write its action as

f I85RIi f i . ~4!

Had theR operator got a trivial kernel, an inverse operat
R21 might be written, which would be called theembedding
operator. In this case the following equation would be exa

] tf i5Hi j RjJ
21fJ8 . ~5!

One might, therefore, evolve the effective discretization w
only M degrees of freedom through equation,
©2002 The American Physical Society03-1
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] tf I85RIi Hi j RjJ
21fJ8[HIJ8 fJ8 , ~6!

whereH8 is therenormalized evolution generator. After the
evolution of the reduced discretization has been comple
the evolution of the original discretization would be found

f i~ t !5RiI
21f I8~ t !. ~7!

Equation~6! requires less storage and CPU time than Eq.~2!
to be simulated on a computer. We may express this situa
by the commutative diagram

Unfortunately, the situation displayed in the previo
paragraph is impossible: the truncation operator must ha
nontrivial kernel. Thus, it lacks a true inverse. Anyway,
‘‘best possible’’ pseudoinverse may be found: an operatorRp

that fulfills the Moore-Penrose conditions@12#,

RRpR5R, RpRRp5Rp,

~RpR!†5RpR, ~RRp!†5RRp. ~8!

These equations are solved only ifRp is the singular values
decomposition~SVD! pseudoinverse ofR. Rp is an ‘‘ex-
trapolation’’ operator, which takes anEM ~reduced! discreti-
zation and returns an approximateEN ~full ! one. The only
important piece of information contained inR is its kernel,
which represents the degrees of freedom that are remo
~see, e.g.,@13#!. RRp is the identity operator onEM andRpR
is a projector on therelevant degrees of freedomsubspace of
EN. These degrees of freedom are stored as the colum
the matrix R. It is highly recommended to orthonormaliz
these column vectors, becauseRp becomes simplyR†.

Using the pseudoinverseRp instead ofR21 the diagram
above does not commute. The ‘‘curvature’’ represents the
error of the procedure. The renormalized evolution gener
is written as

HIJ8 5RIi Hi j RjJ
p , ~9!

where indices are kept for clarity. A quadratic evolution ge
erator would be transformed in this way,

QIJK8 5RIi Qi jkRjJ
p RkK

p . ~10!

This expression shall be shorthanded asQ85RQRp. Higher
degree operators are possible, of course.

The election of theR operator is the key problem. Ideall
it should depend on the problem at hand, i.e., on the fi
equation and the observables we want to measure. In
paper a geometrical approach is introduced that is indep
dent of the physics of the dynamical system, but uses a q
sistatic truncation procedure for a careful selection of
relevant degrees of freedom.
03670
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The schedule for all the simulations that shall be p
sented in the rest of this work is as follows:~1! present a
HamiltonianH ~at most quadratic! and an initial fieldf~0!;
~2! perform the exact evolution and obtainf(t); ~3! propose
a truncation operatorR and obtain the pseudoinverseRp; ~4!
calculate the renormalized Hamiltonian and the truncated
tial field: H85RHRp and f8(0)5Rf(0); ~5! perform the
renormalized evolution onf8(0) and obtainf8(t); ~6! com-
paref(t) andRpf8(t).

We distinguish between areal-space error, which is given
by theL2 norm of @f(t)2Rpf8(t)# ~a vector fromEN! and
the renormalized space error, which is given by theL2 norm
of @Rf(t)2f8(t)# ~a vector fromEM!. Both errors need no
be equal. It is impossible for the first error to vanish for
f~0! and all time, although that is possible for the seco
one. In that case, the retained degrees of freedom areexactly
evolvedafter the rest of the information has been remov
Such a situation corresponds to aperfect action.

III. GEOMETRIC TRUNCATION OPERATORS

In this section a set of construction rules for theR opera-
tor shall be presented that shall allow for practical compu
tions.

Let us consider the 1D interval@0,1# and letPn denote a
regular partition of that interval inton equal cells, denoted by
Ci

m[@( i 21)/n,i /n#. The truncation operatorRM←N shall be
defined by

RIi
M←N[

m~CI
MùCi

N!

m~CI
M !

, ~11!

wherem(•) denotes the standard measure inR, Ci is a cell of
the source partitionPN , andCI is part of the destination one
PM . In geometrical terms, theR matrix elements are given
by the ratio

RIi
M←N5

Overlap between cellsCi and CI

Measure of cellCI
. ~12!

The rationale behind this expression may be expressed w
physical analogy. Let us considerf i as the density of a ga
in the i th cell of the source partition, limited by impenetrab
walls. Now a new set of walls is settled: the ones correspo
ing to the new~destination! partition. The old walls are, afte
that, removed. The gas molecules redistribute uniformly
each new cell. The new densities are the valuesf I that con-
stitute the transformed field discretization. Figure 1 sho
be helpful.

In more mathematical terms, the value off I is a linear
estimate for

f I5E
CI

f~x!dx ~13!

conserving the total mass:( If I5( if i . Equation~11! may
also remind of the definition for conditional probability.

The resultingRM←N operators shall be termedsudden
truncation operators. Compared to standard RSRG integ
3-2
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REAL-SPACE RENORMALIZATION-GROUP APPROACH . . . PHYSICAL REVIEW E65 036703
factor blocking techniques@5#, the operatorsRM←N allow for
a greater flexibility. For example, it is possible to remove
single degree of freedom~see Fig. 2 for a 1D example!. The
sudden truncation operators do not form a closed alge
The composition of sudden truncation operators shall tak
to the concept ofquasistaticor adiabatic truncation opera-
tors. These are defined by

qRM←N5RM←M11RM11←M12
¯RN21←N. ~14!

Of course,qRM←N differs greatly fromRM←N. The term
‘‘quasistatic’’ is suggested by the thermodynamical analo
introduced before. The relation between quasistaticity
reversibility leads us to think that theqRM←N may be better
suited to our purposes.

A single step sudden transformation is given analytica
by

RIi
N21←N5d I ,i

N2I

N
1d I ,i 21

I

N
. ~15!

Iterating this relation it can be proved that the quasista
operators fulfill the recursion relation,

qRIi
M←N5

M112I

M11
qRIi

M11←N1
I

M11
qRI 11,i

M11←N .

~16!

This relation allows to calculate the matrices using no ma
products. This expression improves greatly the efficiency
the numerical applications.

The degrees of freedom that are retained by the qu
static truncation matrix are plotted in Fig. 3. They are theEN

FIG. 1. A part of two overlapping partitions is depicted. Th
lines delimiting the ‘‘old’’ partition are thin~cellsA, B, . . . !, while
the thick lines belong to the ‘‘new’’ one~1, 2, . . .!. For example,
there shall be noR matrix element between cells 1 andC, since they
do not overlap. On the other hand, the matrix elementR1A must be
close to 1.

FIG. 2. The lower partition has just a single degree of freed
less than the one above. A truncation matrix may be written
proceed from one to the other.
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vectors given by the columns ofqRM←N.
Each of the discrete functions depicted in Fig. 3 may

considered to represent a relevant degree of freedom w
truncating with the matrixqR20←80. Although the functions
representing the degrees of freedom are now overlapp
they conserve a true real-space nature. It should be not
that the width of the leftmost and rightmost cells is smal
than the one at the middle of the interval. A consequenc
the quite exact representation of the boundary conditions

It should be remarked that other authors have already
troduced overlapping blocks within RSRG applications@14#.
Intercell correlations, which are the key to the most succe
ful RSRG algorithms@15,16#, are usually captured more ea
ily within an overlapping cells approach.

The most usual subdiscretization approach is the deci
tion method, where one degree of freedom out of everyf is
considered relevant. This truncation scheme may not be
resented within our formalism. The reason is that the imp
mentation on the field discretization is given by the matri

DIi 5d f I ,i . ~17!

But the R matrix ~17! along with its SVD pseudoinvers
yields a trivial dynamics, because the retained degree
freedom arenot in contact. A possible solution to conserv
linearity, though losing the Moore-Penrose conditions~8!.

A discrete Fourier Transform along with a cutoff might b
a suitable linear truncation procedure, but we shall not le
the RSRG setting: our relevant degrees of freedom do ha
local geometric meaning.

IV. APPLICATIONS AND NUMERICAL RESULTS

This section discusses some numerical applications, b
to linear and nonlinear examples.

A. Heat equation

The heat equation is defined on any space by stating
the evolution operator is given by minus the Laplacian
such a space. It is known that the Laplacian operator may
sensibly defined on a great variety of spaces@17#, including
discrete spaces@18#.

Our 1D interval shall always be@0,1#. As it is split intoN
cells, the cells width is alwaysDx51/N. The structure is

o

FIG. 3. Some of the degrees of freedom that are retained by
quasistatic truncation operator proceeding from 80→20 sites. Cells
1, 5, 10, 15, and 20 are depicted. Notice that the ‘‘cells’’ are n
overlapping and have slightly Gaussian nature.
3-3
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ANDREAS DEGENHARD AND JAVIER RODRI´GUEZ-LAGUNA PHYSICAL REVIEW E 65 036703
given by the discrete Laplacian matrix on a linear graph,

Li j 52d i , j2d u i 2 j u,1 , ~18!

with fixed boundary conditionsLI15NNN52. The equation
shall be given by

] tf i52
k

Dx2 Li j f j . ~19!

The first test shall be a random increments initial conditi
i.e., it fulfills the equation,

f i 115f i1r , ~20!

with r a random variable with mean zero, equally distribut
in an interval of widthD. Using N5200, M520, andD
5 1

4 ~a quite severe reduction of a factor 10! we obtain the
results depicted in Fig. 4. The errors for the results of Fig
are summarized in Table I. Errors are noticed to be smalle
renormalized space. The reason is that in real space
sources of error get mixed: the possibility of representat
of the initial data with the restricted degrees of freedom a

FIG. 4. A random increments function is taken as the init
condition~up! with 200 cells. Below, the continuous line shows t
exact evolution under the heat equation withk5

1
2 , along 500 time

steps withDt5531026. The triangles are given by the quasista
approximation with 20 degrees of freedom. The circles repres
the sudden approximation, and the squares follow the sudden
proximation, i.e., conventional symmetric coarse graining.
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the dynamical relevance of the removed information.
renormalized space only the second type of error contribu

To examine the relevant scaling laws@19#, a discretization
of f(x)5d(x21/2) is defined on the 200 cells partition, an
is normalized according to

(
i 51

N

Dxf i51. ~21!

Under time evolution, the peak becomes a Gaussian func
and its widthW follows the law:

W~ t ![(
i 51

N

iDxf i;t1/2. ~22!

Equation~22! can be proved to be exact also in the discr
case as shown in the Appendix. Using the same constan
in the previous calculation, we have performed a quasist
simulation of the same problem, and depicted in Fig. 5
log-log plot of the width against time: The data from th
quasistatic simulation in Fig. 5 fit, after a transient, to
straight line with slope 0.499060.0001. The exact field evo
lution yields exactly the same value, without the transie
The sudden approximation saturates at long times. Us
decimation gives a correct result.

l

nt
p-

TABLE I. Comparative of errors between different truncatio
schemes for heat equation on the random-increments initial co
tion depicted in Fig. 4.

Method Real-space error Renormalized space err

Quasistatic 0.53% 0.29%
Sudden 20% 19%
Decimation 13% 4.7%

FIG. 5. Log-log plot of the width of the Gaussian against tim
The steady straight line has slope'0.5.
3-4
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TABLE II. Low-energy spectrum of a particle in a box split into 100 discrete cells, calculated through exact diagonalization, a
effective variational RG techniques: sudden and quasistatic transformations.

Method

Exact 0.000 967 435 0.003 868 8 0.008 701 0.015 460 0.024 13
Quasistatic 0.000 967 435 0.003 868 8 0.008 701 0.015 463 0.024 71
Sudden 0.008 101 410 0.031 749 3 0.069 027 0.116 917 0.171 53
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B. Low energy states in quantum mechanics

Researchers in RSRG methods have spent many effor
developing techniques for the approximate obtention of
low-energy spectrum of quantum mechanical problems@13#.
The reason was not the difficulty of the problem but of tec
nical nature. With the development of the density matrix R
correlated blocks RG, etc.,@15,16# in the 90’s, the problem
was considered to be solved.

The quasistatic approach allows a very accurate appr
mation to the lowest energies of many quantum mechan
1D systems. The transformationH→H85RHR† may yield
an effective transformation of a Hamiltonian matrix, pr
vided that the transformationR is orthogonal. In this case
the diagonalization ofH8 yields a variational ansatzap-
proach to the real spectrum. The ansatz is of the form

uC&5(
i 51

M

ai uf i&, ~23!

whereuf i& are the rows ofqRM←N after an orthonormaliza
tion procedure, and theai are the variational parameters. Th
diagonalization of the quasistatically truncated Laplac
yields very precise values. For example, ifN5100 andM
510, we obtain the values for the spectrum of2L exposed
in Table II.

The bad results for the sudden approximation are a
misleading@20#. For example, the real-space error measu
according to theL2 norm for the ground state is only aroun
11%. The source of error is the lost of smoothness. The
of the eigenvalues~up to 10! do not fit as well as the firs
ones.

The method has also been tested with the harmonic o
lator and other potentials with equally good results, as lo
as the wave functions are smooth. In case of a potential g
by Vi5V(xi), the Hamiltonian operator is just2Li j
1Vid i j .

C. Kardar-Parisi-Zhang equation

The Kardar-Parisi-Zhang equation is widely used as
model of stochastic and deterministic surface growth@10#.
Here we use the deterministic form defined as

] tf5lu“fu21k¹2f ~24!

representing a surface in which absorption/desorption p
nomena take place. The squared gradient term shal
implemented through the quadratic operator

Ki jk5 1
4 ~d j ,i 112d j ,i 21!~dk,i 112dk,i 21!, ~25!
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which is obtained through the centered derivatives appro
mation to the gradient@21#. Boundary conditions are im
posed for which forward and backward derivatives are e
ployed. The first test evolves an initial condition given by
sinusoidal functionf(x)5sin(4px) with xP@0,1#. The reso-
lution change is 40→20 and 2000 time steps withDt55
31026 were simulated. Figure 6 shows the results forl
52 andk51/2. The errors for such a test are given in Tab
III. A different test was carried out with a random incremen
function, as for the heat equation. The rest of the parame
are the same as in the previous simulation. The results of
simulation are displayed in Fig. 7 and the numerical err
are provided in Table IV.

Some more nonlinear equations have been tried, suc
Burgers@22# and others, with comparable results. We enco
age the reader to experiment.

FIG. 6. A sinusoidal surface profile evolved by the KPZ dyna
ics with the parameters explicitly given in the text. Notice tha
slight asymmetry in the initial function~a lattice artifact! develops a
high asymmetry in the exact and quasistatic approximations.
3-5
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D. Efficiency issues

A problem which must be remarked is that the appro
mation renders new evolution generators which may hav
greater number of nonnull entries than the originals. T
elements typically decrease in magnitude as a power of t
distance to the diagonal, albeit they often alternate sig
This corresponds to the nonlocal space-time effects rema
by Hou, Goldenfeld, and McKane@6#.

This fact forces the practitioner to make computatio
complexity estimates before trying this method. Various f
tors should be pondered:

~1! Reduction factor attainable for a given equation. KPZ
stands more than 50% reduction for a wide set of ini
conditions. The heat equations stands more than 90%.

FIG. 7. Random increments function~above! built in the same
way as that of Fig. 4. Below, the exact evolution is displayed by
continuous line. Squares mark the quasistatic truncation approx
tion, while the dashed lines follow the sudden and the decima
truncations.

TABLE III. Errors in the evolution of a sinusoidal initial condi
tion under KPZ equation, corresponding to the results of Fig. 6.
parameters are explicitly given in the text.

Method Real-space error Renormalized space err

Quasistatic 0.5% 0.2%
Sudden 39% 38%
Decimation 15% 8%
03670
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~2! Availability and stability of local explicit methods. If
implicit methods must be used, or the equation has nonlo
nature, then the original equation is already long ranged
no loss of efficiency comes from applying the RSRG rec
described.

V. CONCLUSIONS AND FUTURE PROSPECTIVES

A formalism has been provided to deal with the reducti
of degrees of freedom for a wide set of field evolution equ
tions. The basis of the formalism is theintegral specification
of the field values~i.e., it is related to finite volume meth
ods!. The key concept to find the transformation betwee
partition of space and another is theoverlappingof cells.

Our specific recipe stands removal of 90% of the degr
of freedom without distortion for linear PDE such as the h
equation, and 50% reduction without appreciable loss of
curacy for KPZ and related nonlinearities.

The main handicap of the technique is shared by
known strategies to the reduction of degrees of freedom:
appearance of nonlocal effects that may spoil the efficie
@6#. Future works on this algorithm should try to find suitab
short-ranged approximations to the renormalized evolut
generators. Also the extension to stochastic PDE makes
local effects appear: a spatially white noise shall develo
nontrivial covariance matrix. The eigenfunctions of this m
trix would be the appropriate basis.

It is easy to generalize the formalism to higher dime
sions, but the algorithms to find cell overlappings is tricki
Nevertheless, fields of vectorial nature do not fit well in th
formalism. The authors are developing a ‘‘difference form
theoretical frame to deal with them, in the line traced
Katz and Wiese@4#.

But the main interest of the authors at the present mom
is a different extension: to find an algorithm in which th
degrees of freedom are not of geometric nature, but arecho-
senby the equation itself.
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APPENDIX: SCALING OF THE DISCRETE HEAT
EQUATION

In this appendix the exactness of relation~22! subject to
any coarse-graining procedure keeping the normaliza
condition ~13! is proved.

e
a-
n

TABLE IV. Errors corresponding to the field evolution of
random-increments initial condition, shown in Fig. 7.

Method Real-space error Renormalized space err

Quasistatic 0.23% 0.23%
Sudden 12% 11%
Decimation 9.4% 6.5%

e
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We generalize the definition in Eq.~22! to the expectation
value for any observableO on a one-dimensional lattic
composed ofN sites according to

^O& t5(
i 51

N

Ot,iDxf t,i ~A1!

with the total timet5nDt andn the number of discrete time
evolutions.

Relation ~22! also describes Brownian motion on a 1
lattice. According to Wick’s theorem@23#, it is sufficient to
prove the linear dependence of the second moment^x2& on
time for any discretization scale, as the following propositi
states:

Proposition. The second moment^x2& as defined by defi-
nition ~22! for the diffusion fieldf is given by ~supposing
free or periodic boundary conditions!

^x2& t52kt1C~f t50!, ~A2!

subject to the normalization constraint~21!. Here,C(f t50)
is a constant that depends on the initial field configurat
and, for ad initial condition, C(f t50)50. In Eq. ~A2!, t is
the time,k is the diffusion constant, and no dependence
the discretization scaleDx is involved.

Using definition~A1! to define the second moment^x2&
we have

^x2& t115(
i 51

N

Dx~ iDx!2f t11,i

5(
i 51

N

i 2~Dx!3F Dt•k

~Dx!2 ~f t,i 2122•f t,i1f t,i 11!f t,i G .
~A3!
or

r

rt
or
h a

e,

03670
n

n

The evolution equation uses a discrete Laplacian~18! and
a forward time Euler scheme@21#. Some algebra and inde
shifting, along with the supposition of either free or period
boundary conditions lead to

^x2& t1152kDt(
i 51

N

$Dxf t,i%1^x2& t . ~A4!

The equation is rewritten, taking into account that E
~21! is valid for all time, as

^x2& t1152kDt1^x2& t . ~A5!

Iterating the proceduren times yields the final result,

^x2& t1152k~ t11!1^x2& t50 . ~A6!

DefiningC(f t50)[^x2& t50 and changing the indext11 to t
we get the result stated in the above proposition. If the ini
field configurationf t50 is provided by thed peak that was
used to generate Fig. 5, Eq.~A6! simplifies to

^x2& t52kt. ~A7!

Equation~A7! is equivalent to the calculation of the mea
squared distance of a random walker after the timet starting
at the center position, i.e., the location of thed peak.
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